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Abstract: Modern computing platforms usually use multiple sensors to report system information.
In order to achieve high availability (HA) for the platform, the sensors can be used to efficiently
detect system faults that make a cloud service not live. However, a sensor may fail and disable HA
protection. In this case, human intervention is needed, either to change the original fault model
or to fix the sensor fault. Therefore, this study proposes an HA mechanism that can continuously
provide HA to a cloud system based on dynamic fault model reconstruction. We have implemented
the proposed HA mechanism on a four-layer OpenStack cloud system and tested the performance of
the proposed mechanism for all possible sets of sensor faults. For each fault model, we inject possible
system faults and measure the average fault detection time. The experimental result shows that the
proposed mechanism can accurately detect and recover an injected system fault with disabled sensors.
In addition, the system fault detection time increases as the number of sensor faults increases, until
the HA mechanism is degraded to a one-system-fault model, which is the worst case as the system
layer heartbeating.

Keywords: failover; high availability; sensor fault; fault detection and recovery; liveness detection

1. Introduction

High availability (HA) [1] is an important feature of a cloud system, where availability
is the percentage of time that an application or service is available at a given time [2,3].
From the perspective of cloud service providers, the availability of the cloud is a factor
that affects customer choice, and this is not less important than the price [4]. For example,
in February 2017, Amazon’s Simple Storage Service failed for 4 h and caused at least
$150 million in losses to customers [5]. Therefore, in modern cloud services, there is a
commitment between the service provider and the customer—that is, the Service-Level
Agreements (SLAs) [6]—and HA is one of the important items in the agreement. In other
words, modern cloud computing systems must protect the liveness of services/applications
running on the computing pool of the system [7]. A common way to do this is to efficiently
detect whether a system fault happens on a cloud service. Then, a corresponding fault
recovery strategy is used to recover the cloud service in a short time.

A modern cloud computing system is comprised of a controller, a computing pool
(physical hosts), virtual machines (VMs), a storage system, and a network infrastructure
that connects the above components [8,9]. A cloud service usually runs on VMs, and the
VMs are placed onto the physical machines of the computing pool. In order to ensure
the HA of the cloud service, many studies have presented several HA techniques [9–11]
for VM liveness detection and system fault recovery. For example, VMware vSphere [9]
uses the heartbeat of the datastore, Internet Control Message Protocol (ICMP) [12], and
VM I/O monitors to detect different types of system faults. Another HA example is
presented in the paper by Tajiki et al. [13], which addresses the issue of efficient system fault
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recovery and system fault prevention for fog-supported Software Defined Networks (SDN).
System fault recovery is triggered by the liveness detection of Fog Nodes, while system fault
prevention is achieved by regular network topology reconfiguration. The scheme reroutes
the network flow to recover and prevent system faults, optimize the energy consumption
of the Fog Node and the reliability of the selected path and guarantee the required quality
of service level.

According to prior studies [14–17], a cloud computing system can be abstracted into
multiple layers, where the functionality of the upper layer depends on that of the lower
layers [18,19]. For example, the host OS layer depends on the host power layer, the host
network layer depends on the lower two layers, and the VM process layer depends on the
lower three layers, as shown in Figure 1. This multi-layer abstraction facilitates the use of
multi-sensor-based fault detection and may reduce system downtime [14,15]. However,
one issue remains unsolved in multi-sensor-based fault detection: a fault may occur at any
sensor and consequently disable the system fault detection procedure, meaning that the
HA mechanism cannot identify and recover a system fault in the cloud service. To this end,
this paper proposes a multi-sensor-based HA mechanism to continuously provide system
(liveness) fault detection and recovery for a protected cloud service, even if some sensors
become faulty.

Figure 1. Schematic diagram of a multi-layer system.

In the proposed approach, a sensor is installed at each layer to report the liveness of
the layer. The sensors can be implemented as a hardware-assisted component such as the
Intelligent Platform Management Interface (IPMI) tool [20] or a software detection process
such as an ICMP-based heartbeating component. Through these sensors, we develop the
system fault detection method based on the Software-Defined High Availability Cluster
(SDHAC) approach [14] to quickly determine whether a layer is faulty and choose an
efficient recovery strategy to recover the protection target. The major problem of the
original HA mechanism in the SDHAC is that a sensor can fail at any time, and then the
HA mechanism designed based on the fault model using all of the sensors cannot work
correctly. Typically, a sensor fault can be detected by checking its return format, values,
and liveness (the ability to respond to a query in a given time). When a sensor fault has
been detected, we propose the use of a dynamic fault model switching method that is able
to reconstruct a new fault model with N − 1 healthy sensors from the original fault model
with N sensors. The system fault detection and recovery methods are updated based on
the new fault model without human intervention. As a result, the multi-layer cloud system
can continue providing HA protection for a cloud service on VMs.

To the best of our knowledge, this study is the first to address the sensor fault issue on
cloud HA. With the assumption of the liveness of the sensor at the highest layer, the pro-
posed HA mechanism can tolerate any detectable sensor fault and continue providing
HA protection for the cloud computing system. To show how a sensor fault affects the
system fault detection efficiency of the proposed HA mechanism, we have conducted
several experiments on a four-layer cloud computing system by injecting different kinds of
sensor faults and system faults. When a sensor fault is detected, the proposed mechanism
attempts to automatically reduce the four-layer fault model to a three-layer fault model
and continue to provide HA protection to the system. The fault model can be further
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reduced to a one-layer fault model with the sensor at the highest layer. For each fault
model, we injected the same set of system faults to evaluate their system fault detection
efficiency. According to the experimental results, the proposed mechanism can tolerate
sensor faults, and the system fault detection efficiency gradually reduces as the number of
healthy sensors decreases. Although, in some cases, the weighted (system) fault detection
time of the proposed mechanism increases, it is still shorter than or equal to that of the tra-
ditional system layer heartbeating [21], which is a common system fault detection method
that requires at least 30 s for system fault detection [9].

The remainder of this paper is organized as follows. Section 2 introduces related work.
Section 3 illustrates the proposed mechanism through examples. Section 4 presents the
experiment results and analysis. Section 5 presents our conclusions.

2. Related Work

In the survey papers [22,23], several fault detection and diagnosis techniques have
been studied. Although most of those techniques utilize multiple sensors, they are designed
to accurately identify whether a fault is happening based on several raw signals from the
sensors. For example, many practical systems such as vehicles [24], aircrafts [25], and
manufacturing systems [26] use multiple sensors to perform fault detection and diagnosis
for different critical components. These kinds of techniques are not applicable to liveness
detection for cloud services. The most popular technique for liveness detection in the cloud
is heartbeating [21]. In this technique, the detection target has to send at least one live
message to the liveness detector (sensor) regularly, typically every 30 s to 2 min [9]. In this
section, we introduce related studies [9,14,15,19] that use multiple sensors to monitor or
detect whether a cloud service/application is live or not. None of these studies have
discussed continuous fault detection with sensor faults in the cloud.

2.1. Multi-Sensor-Based Monitoring in the Cloud

Trihinas et al. [19] use multiple sensors to monitor the performance and behavior
of cloud services and their underlying infrastructure. The proposed monitoring system
aims to monitor elastically adaptive multi-cloud services. In their system, the following
three cases must be considered: (i) resource allocation and application tuning, (ii) network
and security problems detection, and (iii) verification on the Service-Level Agreements.
Therefore, the authors proposed the monitoring of several heterogeneous components,
ranging from low-level system components such as the CPU, memory, disk, and network to
high-level system components such as application throughput and request latency. As the
system only supports monitoring in the cloud, it does not include any HA design for
cloud services running on the platform. Many existing cloud monitoring tools [27–29] also
provide similar functionalities to support multi-layer monitoring.

2.2. NCU-HA and Software-Defined High Availability Cluster (SDHAC)

The NCU-HA [15] aims to provide system (liveness) fault detection and recovery
mechanism for the open source VM project QEMU-KVM [30]. The NCU-HA can be run on
both low-cost personal computers (PCs) and Intelligent Platform Management Interface
(IPMI)-based servers. The NCU-HA can use various detectors (IPMI, ICMP-based sensors
and Libvirt [31]) on the host to determine the type of system fault and recover from it.

The SDHAC [14] was developed based on the concept of NCU-HA. The goal for SD-
HAC is to provide system fault detection and a recovery mechanism for virtual machines
(VMs) on the computing pool at the OpenStack platform [8]. The SDHAC can detect a sys-
tem fault by using various sensors (IPMI, ICMP-based sensors, and Libvirt) in a sequential
manner, from top-layer system sensors to low-layer system sensors. Then, it performs the
corresponding recovery methods to recover the failed VMs and the faulty nodes.
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2.3. Cloud Platform HA

In VMWare vSphere [9], when a host is added to a vSphere HA cluster, an agent
(sensors) is installed on the host. Each host in the cluster acts as a primary host or a
secondary host, where the primary host communicates with vCenter Server and monitors
the status of all protected VMs and secondary hosts. In a cluster, there is only one primary
host at a time. For host protection, the primary host monitors the liveness of the secondary
hosts through a network heartbeat sensor, which exchanges liveness signals every second.
When the primary host loses the network heartbeats from a secondary host within a set
time, it then uses another sensor to check the exchange heartbeat between the secondary
host and one of the datastores. If the secondary host is not exchanging heartbeats with any
datastore, the secondary host is considered to be faulty. Then, the VMs on the secondary
host are restarted on alternate hosts. If the secondary host is exchanging heartbeats with
a datastore, it is considered that the secondary host is located in a network partition or
isolated from the network. In this case, the primary host only keep monitoring the VMs
on the secondary host. If the VM to be restarted is in the power-off state, the primary host
places the VM onto another normal host. For VM protection, when the heartbeat signal
from the protected VM is not received by the primary host within a set time, the primary
host determines that the VM has failed, and then the VM is rebooted to recover the VM.
The set time ranges from 30 s to 2 min. It is worth mentioning that the focus of VMware
vSphere HA is on system fault detection and recovery, and thus the handling strategy of
sensor faults is not mentioned.

On the other hand, OpenStack [8] recommends that users apply Pacemaker-based HA
techniques in their environment, where Pacemaker [32] is an open source HA resource
manager based on heartbeating. Most HA techniques for OpenStack use heartbeating-based
sensors to detect the liveness faults in the VMs and the computing hosts. They handle VM-
level and host-level faults by evacuating and rebooting failed VMs, respectively. However,
none of these techniques consider sensor faults. Specifically, many HA techniques treat
the fault of a heartbeating-based sensor as a target service fault. This is because the
heartbeating-based sensor is robust, and its unexpected response or unresponsiveness is
mainly caused by the fault of the target service.

3. The Proposed Mechanism

In this section, we first define the symbols used in the section. Then, we use the
symbols to explain the concept of multi-layer systems and their fault models with N
sensors. Consequently, we explain the proposed mechanism that can handle sensor faults
with the proposed fault model reconstruction method, and then use an example to illustrate
fault model reconstruction.

3.1. Symbols

Table 1 defines the symbols that are used in this section.

Table 1. Definition of symbols.

Symbol Description

N The cloud system is abstracted into N layers
Li The i-th layer of the cloud system, (0 ≤ i ≤ N − 1)
Di The sensor used to detect Li, (0 ≤ i ≤ N − 1)
Ri The system fault recovery method used to recover Li, (0 ≤ i ≤ N − 1)

Tsr(Di) The sensor response time of sensor Di. (0 ≤ i ≤ N − 1)
Ttd(Di) The transient fault detection time of sensor Di. (0 ≤ i ≤ N − 1)
Tto(Di) The total sensor detection time of sensor Di, where Tto(Di) = Tsr(Di) + Ttd(Di)

3.2. The Multi-Layer Cloud System

A modern cloud computing system can be abstracted into a multi-layer system.
As shown in Figure 1, a cloud computing system is divided into a four-layer system,



Sensors 2021, 21, 542 5 of 16

which consists of a host power layer, a host operating system (OS) layer, a host network
layer, and a virtual machine (VM) process layer. As the multi-layer is an abstracted concept
of the system, the system can be partitioned into N layers, depending on the property of
the subcomponents of the system and the sensors used for these subcomponents, as shown
in Figure 2. In the N-layer system, we install a sensor for each layer, that is, D0 to DN−1.
For liveness detection, a system must be able to handle transient faults that could occur
and then be recovered automatically before the system is considered not to be live. As a
result, each layer has at most two kinds of faults, as described below.

• Transient fault: A system fault with a limited duration, which will temporarily hinder
the normal operation of the system until the system fault disappears [33], such as the
network being busy. It is worth mentioning that the system can still operate normally
after the transient fault disappears.

• Permanent fault: The system fault will permanently hinder the normal operation of
the system until the system fault is eliminated manually or by a system, such as host
power off.

Figure 2. The impact of a system fault on a multi-layer system with the layer dependency property.

In a multi-layer system, there is an important and useful property called (liveness)
layer dependency. This property has been reported in several prior studies. For example,
Tchana et al. [16] indicated that the hardware layer fault can trigger faults at high layers
(VM and application) in a three-layer system. Here, we propose a layer dependency
property for N layers as follows.

• Liveness layer dependency: in a system, the liveness of the upper layer depends on
the liveness of the lower layers.

This means that a system fault in a lower layer can result in the failure of the liveness
of all upper layers, but a system fault in an upper layer cannot impede the liveness of any
lower layer. For example, Figure 2 is an N-layer system. When a system fault occurs at the
layer Li (0 ≤ i ≤ N − 1), all the layers above Li must fail. On the contrary, all the layers
below the Li do not fail. An example in a real system: When the host network fails, the user
cannot access the VM, but the host power and OS are still live. Similarly, the network
being busy (transient fault) causes the VM to be temporarily inaccessible until the network
becomes live again, and the VM will not be damaged after the network stops being busy.

3.3. Continuous Liveness Detection and Fault Recovery with Sensor Faults

In this study, we assume that the highest-layer sensor never fails. There are two
reasons for this: first, the faults at the highest-layer sensor result in incomplete system
fault detection, which is beyond our research scope, and second, the highest-layer sensor is
usually the most robust in practical cloud systems. As liveness detection on the highest
layer usually requires a long time to distinguish transient faults from permanent faults,
we can use other low-layer sensors to accelerate this process. In addition, we assume that
only one system fault in the cloud system occurs at a time, due to problem simplification.
This means that no other system faults can occur in the same host of the computing pool
until the protected target has been recovered.

Based on the layer dependency feature of the multi-layer system, we propose a new
HA mechanism based on fault model reconstruction, as shown in Figure 3. The mechanism
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first checks sensor faults, and then reconstructs the fault model based on the detected
sensor faults if needed. Then, the mechanism confirms whether there is a system fault
in the cloud system by using the sensor of the highest layer. This is because all faults in
the system can be detected by the sensor of the highest layer according to the liveness
layer dependency. If the highest layer sensor detects a system fault, the mechanism will
detect the remaining layers according to the fault model to find the system fault location.
The common method of locating the system fault is to detect the remaining layers in order
from highest to lowest until the lowest faulty layer is found, where the lowest faulty layer
is the location of the root cause. If any sensor fault occurs while finding the system fault,
the mechanism needs to reconstruct the fault model and then restarts the new system fault
detection process based on the newly constructed fault model. The method for identifying
sensor faults can be achieved by checking the return format, values, and liveness (the
ability to respond to a query in a given time) of the sensor. On the contrary, if there is no
sensor fault and the system fault location (the lowest faulty layer) is found, the mechanism
directly checks whether the system fault location may have a transient fault according to
the fault model. If the system fault location may have a transient fault, the mechanism
continuously uses the sensor at the lowest faulty layer within the transient fault detection
time to confirm whether the fault is transient. If the mechanism has confirmed that the
system fault is a transient fault because the layer has responded to the liveness query
of its layer sensor, the mechanism simply ignores the transient fault and begins the next
round of system fault detection. On the contrary, if the mechanism has confirmed that
the system fault is a permanent fault, the mechanism performs the corresponding fault
recovery method to recover the system. After the failed system is successfully recovered,
the mechanism then starts the next round of system fault detection.

Figure 3. Flow chart of the proposed high-availability mechanism.

3.4. Fault Model Reconstruction and Switching

The fault model reconstruction method (Algorithm 1) is described as follows.
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Algorithm 1 fault_model_reconstruction

Input: the faulty sensor Di and the corresponding layer Li.
Output: a fault model.

1: If Li is the highest layer, return Reconstruction_Failure.
2: Combine the layers Li and Li+1 into a new layer L′i.
3: Use the sensor Di+1 as the sensor D′i of L′i.
4: Calculate the value Tx as the maximum of Tto(Di) and Tto(Di+1). Update Tto(D′i) to be

the smallest multiple of Tsr(Di+1) that is larger than or equal to Tx. The total sensor
detection time can be divided into a sensor response time and a transient fault detection
time.

5: Update Tsr(D′i) with Tsr(Di+1).
6: Update Ttd(D′i) with the difference between the total sensor detection time and its

sensor response time.
7: If Ttd(D′i) is larger than 0, L′i includes transient faults.
8: Reuse Ri as the recovery method of L′i.
9: For k = 0 ∼ i− 1, reuse the system fault detection and recovery methods of Lk at L′k.

10: For k = i + 2 ∼ N − 1, reuse the system fault detection and recovery methods of Lk
at L′k−1.

11: return the new fault model based on the new multi-layer system from L′0 to L′N−2.

The concept of Algorithm 1 is to merge the layer Li for which the sensor Di has failed
with the normal layer Li+1, as described in Step 2. Then, the new merged layer, namely, L′i,
needs to be updated with new system fault detection and recovery methods. In the case
that Tto(D′i) > Tsr(D′i), the proposed HA mechanism needs to wait for a sufficient time to
cover transient faults, as shown in Steps 4 to 7. Then, the mechanism directly applies the
recovery method for Li to the new layer L′i because the low-layer recovery method must
guarantee the recovery of the upper layers, as shown in Step 8. Take Figure 1 as an example:
the recovery method of the host OS layer needs to consider the recovery of the protection
target—the VM process—which means the above layers must be healthy after recovery.
A typical solution for this case is to evacuate the VM to a healthy host. Other layers are not
affected by the proposed fault model reconstruction method and can be reused, as shown
in Steps 9 and 10.

To analyze the computational and space complexity, we assume that the cloud com-
puting pool consists of M hosts and each host has N layers. The proposed mechanism
uses sequential detection to scan whether a system fault exists at some layer, which is
similar to the system fault detection method of the SDHAC [14], and creates K threads
to perform parallel liveness detection for each host. The computational complexity of
the proposed fault model reconstruction method is O(N), and the space complexity is
O(M ∗ N) for a sensor fault; the computational complexity of the system fault detection
method is O(M

K + N), and the space complexity is O(M ∗ N) for each system fault at the
cloud system. When the number of faulty hosts is L, only the computational complexity
of the system fault detection method changes to O(M−L

K + L
K ∗ N). Generally, N and L are

small, and M is much larger than N and L. Therefore, the computational complexity of the
system fault detection method is close to O(M

K ).
It is worth mentioning that the number of possible fault models is 2N−1. Although in-

creasing N could help the HA mechanism to achieve faster system fault detection [14] or
faster recovery [8,9,14,15], it could greatly complicate the design and implementation of
the HA mechanism because more system fault detection sensors and system fault recovery
methods would need to be included. As a result, N should be a small number in practice.

3.5. Example of Fault Model Reconstruction

After reconstructing the fault model, the proposed mechanism should switch the fault
model and continue to detect system faults based on the new fault model. In the following,
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we employ a seven-layer (N = 7) system comprised of L0 to L6 layers as an example to
explain the details of how to reconstruct the fault model.

First of all, the fault model used in this study can be shown in two important ta-
bles: the fault-symptom table [34,35] and the sensor information table, as shown in
Tables 2 and 3. Table 2 is the fault-symptom table of the seven-layer system, which is
used to list the symptoms of all system faults in the cloud system. In the fault-symptom ta-
ble, the system fault location is a layer and the system fault symptom is a list. The elements
in the system fault symptom list represent the results detected by all sensors from D0 to
DN−1 when a system fault occurs, where 0 means that the sensor detects that the layer is
not faulty, and 1 means that the sensor detects that the layer is faulty. For example, when a
system fault occurs at L1, only the detection result of D0 is 0; this is because all other layers
except L0 are faulty.

Table 2. Fault-symptom table of a seven-layer cloud system used for the fault detection method.

System Fault Location Symptoms Detected by All Sensors from D0 to D6

[D0, D1, D2, D3, D4, D5, D6]
L0 [1, 1, 1, 1, 1, 1, 1]
L1 [0, 1, 1, 1, 1, 1, 1]
L2 [0, 0, 1, 1, 1, 1, 1]
L3 [0, 0, 0, 1, 1, 1, 1]
L4 [0, 0, 0, 0, 1, 1, 1]
L5 [0, 0, 0, 0, 0, 1, 1]
L6 [0, 0, 0, 0, 0, 0, 1]

Table 3 is the sensor information table, which lists the information of all sensors used
in the seven-layer system. For each sensor, the table displays the sensor ID, the layer to
be detected by the sensor, the value of the “Including transient faults?” column, the total
sensor detection time of the layer sensor and the sensor response time of the layer sensor.
The “Including transient faults?” column shows whether the layer may generate a transient
fault. The total sensor detection time is the sum of the sensor response time and the
transient fault detection time.

Table 3. Layer sensor and corresponding detection information of a seven-layer system.

Sensor Name ID Detection Including Total Sensor Sensor Response
Target (Layer) Transient Faults? Detection Time (s) Time (s)

D0 0 L0 N 1 1
D1 1 L1 Y 4 2
D2 2 L2 N 2 2
D3 3 L3 Y 30 1
D4 4 L4 N 3 3
D5 5 L5 N 2 2
D6 6 L6 N 1 1

In order to facilitate the explanation of the reconstruction method of the fault model,
the definition of the new layer type is given below.

• Active layer: The layer in which the layer sensor is working.
• Disabled layer: The layer in which the layer sensor has failed.

According to the status of the layer sensor, the layers are divided into active layers
and disabled layers. According to the liveness layer dependency, we can detect system
faults in the disabled layer through the sensor of the active layer higher than the disabled
layer. Therefore, we first reorganize the layer by merging the disabled layer and the higher
active layer as a new layer called the combination layer.
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• Combination layer: The layer consists of an active layer and several continuous lower
disabled layers and uses the sensor of the active layer as its layer sensor.

In Figure 4, Figure 4a is a seven-layer system in which the sensors D0, D1, and D4
have failed. Then, we merge L0, L1, and L2 into one combination layer L′0 and merge L4
and L5 into another combination layer L′2 based on the proposed fault model reconstruction
method, one at a time. The final result is shown in Figure 4b. Thus, we can detect the
system faults of L0, L1, and L2 through D2 and detect the system faults of L4 and L5 through
D5. After that, we obtain a new layer list, which contains L′0, L′1, L′2, and L′3. This means
that the seven-layer system becomes a four-layer system. Moreover, the layers in the new
layer list still have liveness layer dependency.

Figure 4. (a) Seven-layer system with three disabled layers. (b) The four-layer system generated by
the fault model reconstruction method.

Next, we can update the fault-symptom table based on the active sensors and liveness
layer dependency, as shown in Table 4. We use sensor D2 as sensor D′0, sensor D5 as
sensor D′2, and reuse sensors D3 and D6 as sensors D′1 and D′3, respectively. In Table 4,
the elements of the system fault symptom list represent the detection results of D′0, D′1, D′2,
and D′3, respectively. Similarly, we must also update the sensor information table, as shown
in Table 5. We first update the sensor list, sensor ID list, and detection target list; then, we
use the fault model reconstruction to obtain the corresponding fault model parameters,
such as the total sensor detection time, sensor response time, the need to handle transient
faults, and the recovery method. Note that the sensor information table only records the
necessary parameters for system fault detection.

Table 4. The updated fault-symptom table of the new four-layer system.

System Fault Location Symptoms Detected by All Sensors from D0’ to D3’

[D′0, D′1, D′2, D′3]
L′0 [1, 1, 1, 1]
L′1 [0, 1, 1, 1]
L′2 [0, 0, 1, 1]
L′3 [0, 0, 0, 1]

Table 5. The updated sensor information table of the new four-layer system.

Sensor Name ID Detection Including Total Sensor Sensor Response
Target (Layer) Transient Faults? Detection Time (s) Time (s)

D′0 2 L′0 Y 4 2
D′1 3 L′1 Y 30 1
D′2 5 L′2 Y 4 2
D′3 6 L′3 N 1 1
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In order to recover the protected target, the proposed fault model reconstruction
method must be able to automatically create new recovery methods for L′0 and L′2. The new
recovery method R′0 is equal to R0. Similarly, R′2 is equal to R4. Finally, the proposed fault
model reconstruction method reuses R3 and R6 as R′1 and R′3, respectively.

4. Experimental Results
4.1. Experimental Environment

The proposed fault model reconstruction method can be used in a cloud system of N
layers. The goal of our experiment was to evaluate the impact of fault model reconstruction
on the performance of the HA mechanism. To do this, we injected sensor faults to the
system in turn and then observed how the ability of system fault detection was affected.
We implemented an HA mechanism for a four-layer OpenStack cloud system based on
the proposed mechanism, as shown in Figure 5. The fault model for the four-layer system
could include another seven fault models. The details of the experiment are shown in
Section 4.3. The OpenStack version we applied was Queens. In the OpenStack system,
there is a block storage host, a controller host, and several compute hosts. On each compute
host, we placed several virtual machines (VMs). The specifications of the hosts are shown
in Table 6. We set up all VMs with two vCPUs, 2 GB of memory, 25 GB disks, and an
Ubuntu server 16.04 as the operating system (OS).

Figure 5. Architecture diagram of the experimental environment.

Table 6. Specification table of the hosts in the system to be tested.

Host Operating System CPU Memory Disks

Controller Ubuntu Server 16.04 Intel Xeon E5-2620v2 48 GB 300 GB
Compute 1 Ubuntu Server 16.04 Intel Xeon E5-2620v2 48 GB 500 GB
Compute 2 Ubuntu Server 16.04 Intel Xeon E3-1240v5 16 GB 1 TB

Block Storage Ubuntu Server 16.04 Intel R© CoreTM i7-3770 8 GB 1 TB

We abstracted the OpenStack cloud system into a four-layer system, where the lower
to higher layers were the host power, the host OS, the host network layer, and the VM
process layers. The fault-symptom table and the sensor information table are shown in
Tables 7 and 8. We used the Intelligent Platform Management Interface (IPMI) to detect the
host power layer and the host OS layer, the ICMP-based sensor to detect the host network
layer, and Libvirt as a sensor to detect the liveness of VM processes. Although transient
faults may occur in the host OS layer and the VM process layer, we did not divide the total
sensor detection time of these two layer sensors into sensor response time and transient
fault detection time, because the total sensor detection time of these two layer sensors was
very short. It is worth mentioning that the actual sensor response time may have been
shorter than the given sensor response time listed in Table 8; this is because the sensor
response time is the deadline to respond to liveness query.
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Table 7. Fault-symptom table of the system under testing. VM: virtual machine.

System Fault Location System Fault Symptom

Host power layer [1,1,1,1]
Host OS layer [0,1,1,1]

Host network layer [0,0,1,1]
VM process layer [0,0,0,1]

Table 8. Layer sensor and corresponding detection information. IPMI: Intelligent Platform Management Interface. ICMP: In-
ternet Control Message Protocol.

Sensor Name ID Detection Including Total Sensor Sensor Response
Target (Layer) Transient Faults? Detection Time (s) Time (s)

IPMI 0 host power N 0.06 0.06

Watchdog 1 host OS Y 4 4of IPMI

ICMP-based 2 host network Y 31 1sensor

Libvirt 3 VM process Y 1 1

4.2. Sensor Information

To detect sensor faults, the correctness of the sensor information should be discussed.
The IPMI sensor includes IPMItool software and IPMI-compliant hardware. The response
of the IPMI sensor and the Watchdog of IPMI sensor is in the form of a message with
a specific format, which contains the host power status and OS countdown timer value,
respectively. The ICMP-based sensor and Libvirt are software components that run on the
computing host, and their status can be detected by querying the host OS. The response
of the ICMP-based sensor and Libvirt is in the form of a message with a specific format,
which contains time-to-live message of the network packet and the VM process status,
respectively. Therefore, the HA system can detect the faults of the first two sensors by
checking whether the response is received and the correctness of the response format, and it
can detect the faults of the latter two sensors by checking the correctness of the response
format and the sensor status.

4.3. Experimental Design

In the experiments, we disabled different sets of sensors in the proposed HA mech-
anism in order to observe the system fault detection efficiency based on different fault
models. In total, seven possible fault models could be created by the proposed fault
model reconstruction method, along with the original fault model with four active sensors,
as shown in Table 9. System fault detection based on different fault models can have
different results, because the fault models that use fewer sensors may have worse detection
efficiency. To evaluate the system fault detection performance of the fault models, we in-
jected system faults into the OpenStack system according to the system faults of each layer.
The method of injecting system faults is shown in Table 10. The host power fault involved
turning off the power of the host, the host OS fault involved making the host OS hang,
the host network fault involved making the host inaccessible through the network, and the
VM process fault involved forcing the VM to crash.
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Table 9. Fault models with the IDs of active sensors.

Fault Model Cases IDs of Active Sensors

1 3,2,1,0

2 3,2,1

3 3,2,0

4 3,1,0

5 3,2

6 3,1

7 3,0

8 3

Table 10. System fault injection method.

System Fault Type Description System Fault Injection Method

Host power fault Compute node loses power Power off the compute node
Host OS fault Compute node OS not responding Kill the fist process in the compute node

Host network fault Compute node cannot be connected Shut down the network card of the compute node
VM process fault VM process is not running Terminate the VM process in the compute node

4.4. Experimental Results

In order to evaluate the performance and correctness of the proposed HA mechanism
in different fault models, we injected each system fault at least 10 times to obtain the average
system fault detection time and confirm whether the system had properly recovered.
The system fault detection time was the time from the start of the system fault injection to
the determination of the system fault type. Table 11 shows the average time for the HA
mechanism to detect different system faults based on different fault models, where the
time unit is seconds.

Table 11. Detection time of various system faults in each fault model case (in seconds).

Fault Model Cases VM Process Fails Host Network Isolation Host OS Hangs Host Power Off

1 1.99 32.78 3.78 4.02
2 2.02 32.76 3.52 3.62
3 2.82 32.17 32.64 3.62
4 31.55 33.88 2.87 3.15
5 2.77 33.26 32.46 33.64
6 31.44 32.37 2.93 2.94
7 32.19 31.57 31.68 2.88
8 31.56 31.8 31.21 31.72

Here, we used a common system fault detection method—the system layer
heartbeating—as the comparison baseline. The system layer heartbeating can be regarded
as a sensor used in a one-layer system. This is because the system layer heartbeating usually
only detects the liveness of the protection target, that is, the highest layer. The system layer
heartbeating used in cloud systems usually spends at least 30 s on system fault detection,
in particular for transient network faults. In this study, we set the system layer heartbeating
time to 31 s.
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For comparison, the weighted system fault detection time of each fault model and
system layer heartbeating was needed. To calculate the weighted fault detection time of
different fault models, we needed to multiply the system fault probability by the aver-
age system fault detection time for each system fault type and then add them together.
The system fault probability values used in this study were based on the National Center
for Supercomputing Applications (NCSA) Platinum and Titan fault data summary [36]. As
the software fault included the system fault of the VM process, the host network, and the
host OS layers, the system fault probability of these three layers was 26.2%. In addition,
as the host OS layer could detect hardware system faults, the system fault probability of
the host OS layer was 26.2 + 2.84 = 29.04 (%). In summary, the system fault probabilities
from the VM process layer to the host power layer were 26.2%, 26.2%, 29.04%, and 18.56%,
respectively. The results are shown in Figure 6.

Figure 6. Comparison of weighted fault detection time (in seconds).

According to the experimental results, we know that the HA mechanism can always
tolerate sensor faults and can accurately recover the failed protected target. Figure 7 shows
the weighted system fault detection time of each case and the relationship between the
cases. When a sensor fails, the proposed HA mechanism will lose part of its detection
ability, thereby increasing the system fault detection time. Although in some cases, the pro-
posed mechanism requires a longer weighted fault detection time, the time is still less than
or equal to the weighted fault detection time of the system layer heartbeating. Generally,
in terms of detection efficiency, the original fault model that has not been reconstructed
has the best system fault detection efficiency. As the number of reconstructions increases,
the performance of the reconstructed fault model decreases. Finally, the reconstructed fault
model is degraded to a one-layer model, which is the worst case and has the same perfor-
mance as the system layer heartbeating. In this experiment, the performance (weighted
fault detection time) of the original fault model is 10.95 s, the performance of the fault
models with one failed sensor ranges from 10.81 to 19.32 s, the performance of the fault
models with two failed sensors ranges from 18.11 to 26.44 s, and the performance of the
fault models with three failed sensors is 31.55 s. As each sensor has different system
fault detection ability, the loss of different sensors has different effects on the system fault
detection time. As a result, the weighted system fault detection time does not decrease
linearly in terms of the number of sensor faults.
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Figure 7. The weighted average of system fault detection time for all cases and the fault model
switching paths.

5. Conclusions

In this study, we proposed a HA mechanism that can dynamically change the fault
model in response to different sensor faults. We implemented the proposed HA mechanism
on a four-layer OpenStack cloud platform. According to the experimental results, for all
possible sensor faults, the proposed mechanism can correctly detect all types of system
faults and recover the protected target form the system faults. In addition, according to our
experimental results, the average of weighted system fault detection time for zero-sensor
fault, one-sensor fault, two-sensor faults, and three-sensor faults are 10.95 s, 16.24 s, 23.22 s,
and 31.55 s, respectively. Those results are better or equal to the system fault detection
time (31 s) for system layer heartbeating. The experiment results (Figure 7) also show that
as the number of reconstructions increases, the performance of the reconstructed fault
model decreases. This is because the system fault detection capability of the fault model
is reduced due to the sensor faults. Eventually, the model can be degraded to one-layer
system with only the ability to perform system layer heartbeating.
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